
Matt Keeter
March 7, 2025

Implicit Surfaces &
Independent Research

A brief timeline
2025

A brief timeline
20252021

Embedded & systems software

Oxide Computer Company

A brief timeline
202520212013

Electrical engineering

Formlabs

A brief timeline
2025202120132011

Grad school

MIT Center for Bits & Atoms

A brief timeline
20252021201320112007

Undergrad

Harvey Mudd College

A brief timeline
20252021201320112007

A brief timeline
20252013

Graphics research!

What’s so interesting about
implicit surfaces?

What does independent
research look like?

What are implicit surfaces?

f(x, y, z) → ℝ

f(x, y, z) < 0
f(x, y, z) > 0
f(x, y, z) = 0

inside the shape

outside the shape

at the surface

f(x, y, z) = x4 − 5x2 + y4 − 5y2 + z4 − 5z2 + 10

Complex
closed-form
implicit surfaces

Complex
closed-form
implicit surfaces

Complex
closed-form
implicit surfaces

Compact representation

680 math operations

3612 bytes

(this image is 250633 bytes, 69× larger)

…with arbitrary resolution

“Assembly language for shapes”

Geometry kernel

Rendering MeshesVolume data

Math expressions

Traditional
CAD UIs

Domain-specific
tools

Scripting
languages

Weird CAD
software

By analogy to LLVM IR

Optimization

x86-64 WebAssemblyARM64

LLVM IR

C Rust SwiftC++

Solid modeling and CSG
(that’s Constructive Solid Geometry)

Solid modeling and CSG
(that’s Constructive Solid Geometry)

A microcosm of CS topics

Graphics
programming

Numerical
programming

GPU
programming

Data structures

Compilers

Algorithms

x2 + y2 − 1

A simple example

Constructive Solid Geometry
A small example

f1(x, y) = x2 + y2 − 1 f2(x, y) = (x − 1)2 + y2 − 0.5

Constructive Solid Geometry
Union

min (f1(x, y), f2(x, y))

Constructive Solid Geometry
Intersection

max (f1(x, y), f2(x, y))

Constructive Solid Geometry
Difference

max (f1(x, y), − f2(x, y))

How do we render
these shapes?

Rendering
The naive strategy

max (f1(x, y), − f2(x, y))
Evaluate at every pixel!

O(N2 × E)
N is image size
E is expression size

Rendering in 3D
The naive strategy

O(N3 × E)
N is image size
E is expression size

This is not feasible!

One weird trick
Interval arithmetic

struct Interval {
 lower: f32,
 upper: f32,
}

X ∈ [0, 1]
Y ∈ [2, 4]
X + Y ∈ [2, 5]

One weird trick
Interval arithmetic

f(x, y) = max (x2 + y2 − 1, 0.5 − (x − 1)2 + y2)

One weird trick
Interval arithmetic

X ∈ [1, 1.5]
Y ∈ [0.5, 1]

f(X, Y) ∈ [0.11, 0.80]
f(X, Y) > 0

Interval arithmetic lets us prove
regions empty or full

The render loop

Interval
evaluation Subdivide

Recurse

Skip empty / full
regions

Pixel
evaluation

Evaluation complexity
Reduced dimensionality

Work is concentrated 
at the model’s edges

Evaluation complexity
Amortization over pixels

M × M

pixels

The expression is evaluated 
once for this region

Interval evaluation cost is 
amortized over pixels

Expression simplification
The second weird trick

max (x2 + y2 − 1, 0.5 − (x − 1)2 + y2)

max (x2 + y2 − 1, 0.5 − (x − 1)2 + y2)
X ∈ [−1, − 0.5]
Y ∈ [0.5, 1]

max ([−0.3, 0.4], [−1.7, − 1.1])

Expression simplification
The second weird trick

x2 + y2 − 1

Within this region, we can simplify

the expression to

max ([−0.3, 0.4], [−1.7, − 1.1])

max (x2 + y2 − 1, 0.5 − (x − 1)2 + y2)

Expression simplification
The second weird trick

Interval arithmetic lets us skip
entire chunks of computation

Modified render loop

Interval
evaluation Subdivide

Recurse

Skip empty / full
regions

Pixel
evaluation

Simplify
expression

304 math operations, 
129 of which are CSG

11 math operations are 
relevant within this region

From 2D to 3D

3D rendering
It’s basically the same!

3D rendering
Side view

3D rendering
Side view

Modified render loop

Interval
evaluation Subdivide

Recurse

Skip empty / full
regions

Voxel
evaluation

Simplify
expression

Skip occluded
regions

Heightmaps and shading

Heightmaps and shading

Finding surface normals

(∂f(x, y, z)
∂x

,
∂f(x, y, z)

∂y
,

∂f(x, y, z)
∂z)

At the surface of the model,

the normal is given by

Partial derivatives in 2D

Partial derivatives in 2D

Partial derivatives in 2D

Gradient operator overloading

struct Grad {
 value: f32,
 dx: f32,
 dy: f32,
 dz: f32,
}

a = 1,
∂a
∂x

= 0.1

b = 3,
∂b
∂x

= 0.4

a + b = 4,
∂ (a + b)

∂x
= 0.5

Modified render loop

Interval
evaluation Subdivide

Recurse

Voxel
evaluation

Simplify
expression

Normal
evaluation

Skip empty / full
regions

Skip occluded
regions

Deferred rendering

+ =

1024 × 1024 × 1024 render region

Fast evaluation of math trees

Instruction
tapeMath tree Math graph Bytecode

Our roadmap

fn eval(ops, reg_count, vars) {
 regs = vec![0; reg_count]
 for (out, op) in ops {
 regs[out] = match op {
 Op::X => vars.x,
 Op::Y => vars.y,
 Op::Const(c) => c,
 Op::Sqrt(arg) => regs[arg].sqrt(),
 Op::Square(arg) => regs[arg].square(),
 Op::Sub(lhs, rhs) => regs[lhs] - regs[rhs],
 Op::Add(lhs, rhs) => regs[lhs] + regs[rhs],
 Op::Max(lhs, rhs) => max(regs[lhs], regs[rhs]),
 }
 }
 regs[0]

}

Instruction
tapeMath tree Math graph Bytecode

Equation → Tree

max (x2 + y2 − 1, 0.5 − (x − 1)2 + y2)

x y

square square

add

sqrt

sub

1

max

x

y

square square

add

sqrt

sub

0.5

sub

1

Instruction
tapeMath tree Math graph Bytecode

Deduplication

Tree → Graph

x y

square square

add

sqrt

sub

1

max

x

y

square square

add

sqrt

sub

0.5

sub

1

Tree → Graph

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1

Instruction
tapeMath tree Math graph Bytecode

Flattening

Flattening the graph
“Postorder traversal”

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1

We want an instruction ordering
such that arguments are defined
before they are used

• DFS walk through the graph

• Emit a node once all of its

arguments have been emitted

Flattening the graph
“Postorder traversal”

$0 = var-x

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1
$0

Flattening the graph
“Postorder traversal”

$0 = var-x
$1 = const 1

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1
$0 $1

Flattening the graph
“Postorder traversal”

$0 = var-x
$1 = const 1
$2 = sub $0 $1

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1
$0 $1

$2

Flattening the graph
“Postorder traversal”

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

$0 $1

$2

$3

$4

$5

$6

$7$8

$9

$10

$11

$12

$13

$14

y

square square

add

sqrt

sub

max

x

square

add

sqrt

sub

0.5

sub

1

Instruction
tapeMath tree Math graph Bytecode

Register 
allocation

Reducing memory usage

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = var-x
r2 = const 1
r4 = sub r1 r2
r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

Register allocation

Single static assignment form

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

This is now a compilers talk!

Register allocation
Liveness ranges

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

$0 Begins when a value is written

Ends when the value is 
used for the last time

Register allocation
Liveness ranges

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

$0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

$0 Ends when a value is written

Begins when the value is 
used for the first time

Register allocation
Reverse Linear Scan

• Maintain a value → register mapping

• Bind the output value to r0

• Walk through the instructions in reverse

• When an value becomes live, 
bind it to an unused register

• When a value is no longer live,
release its register binding

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = max r? r?

SSA value Register
$14 r0

- r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = max r? r?

SSA value Register
- r0
- r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = max r0 r?

SSA value Register
$9 r0
- r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = max r0 r1

SSA value Register
$9 r0
$13 r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sub r? r?
r0 = max r0 r1

SSA value Register
$9 r0
$13 r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sub r? r?
r0 = max r0 r1

SSA value Register
$9 r0
- r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sub r1 r?
r0 = max r0 r1

SSA value Register
$9 r0
$12 r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
$12 r1
$1 r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sqrt r?
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
$12 r1
$1 r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sqrt r?
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
- r1
$1 r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
$11 r1
$1 r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
$10 r1
$1 r2
$5 r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$9 r0
$0 r1
$1 r2
$5 r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
$8 r0
$0 r1
$1 r2
$5 r3
$7 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
$5 r3
$7 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
$5 r3
$6 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
$5 r3
$3 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
$4 r3
$3 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
- r3
$3 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
- r3
$2 r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r4 = sub r1 r2
r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
$1 r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r2 = const 1
r4 = sub r1 r2
r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
$0 r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

r1 = var-x
r2 = const 1
r4 = sub r1 r2
r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

SSA value Register
- r0
- r1
- r2
- r3
- r4

Register allocation
Reverse Linear Scan

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

Register allocation
Liveness ranges + simplification

A value’s liveness range begins when
the value is used for the first time

If min or max can be simplified, then
one or the other argument is not used

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

Register allocation
Liveness ranges + simplification

A value’s liveness range begins when
the value is used for the first time

If min or max can be simplified, then
one or the other argument is not used

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

Register allocation
Reverse linear scan with simplification

• Maintain a value → register mapping

• Bind the output value to r0

• Walk through the instructions in reverse

• If the instruction’s output value 
is not live, then skip it!

• When an value becomes live, 
bind it to an unused register

• When a value is no longer live,
release its register binding

$0 = var-x
$1 = const 1
$2 = sub $0 $1
$3 = square $2
$4 = var-y
$5 = square $4
$6 = add $3 $5
$7 = sqrt $6
$8 = const 0.5
$9 = sub $8 $7
$10 = square $0
$11 = add $10 $5
$12 = sqrt $11
$13 = sub $12 $1
$14 = max $9 $13

Register allocation
Reverse linear scan with simplification

r0 = var-x
r1 = const 1

r2 = var-y
r2 = square r2

r0 = square r0
r0 = add r0 r2
r0 = sqrt r0
r0 = sub r0 r1
r0 = copy r0

Instruction
tapeMath tree Math graph Bytecode

Deduplication Flattening Register 
allocation

r1 = var-x
r2 = const 1
r4 = sub r1 r2
r4 = square r4
r3 = var-y
r3 = square r3
r4 = add r4 r5
r4 = sqrt r4
r0 = const 0.5
r0 = sub r0 r4
r1 = square r1
r1 = add r1 r3
r1 = sqrt r1
r1 = sub r1 r2
r0 = max r0 r1

Bytecode interpreter
fn eval(ops, reg_count, vars) {
 regs = vec![0; reg_count]
 for (out, op) in ops {
 regs[out] = match op {
 Op::X => vars.x,
 Op::Y => vars.y,
 Op::Const(c) => c,
 Op::Sqrt(arg) => regs[arg].sqrt(),
 Op::Square(arg) => regs[arg].square(),
 Op::Sub(lhs, rhs) => regs[lhs] - regs[rhs],
 Op::Add(lhs, rhs) => regs[lhs] + regs[rhs],
 Op::Max(lhs, rhs) => max(regs[lhs], regs[rhs]),
 }
}
regs[0]

}

Bytecode interpreter overhead
fn eval(ops, reg_count, vars) {
 regs = vec![0; reg_count]
 for (out, op) in ops {
 regs[out] = match op {
 Op::X => vars.x,
 Op::Y => vars.y,
 Op::Const(c) => c,
 Op::Sqrt(arg) => regs[arg].sqrt(),
 Op::Square(arg) => regs[arg].square(),
 Op::Sub(lhs, rhs) => regs[lhs] - regs[rhs],
 Op::Add(lhs, rhs) => regs[lhs] + regs[rhs],
 Op::Max(lhs, rhs) => max(regs[lhs], regs[rhs]),
 }
}
regs[0]

}

Unpredictable 
branch

Lots of reading and 
writing to RAM

Bytecode → Assembly
The final frontier

r0 = var-y
r0 = square r0
r1 = var-x
r1 = square r1
r0 = add r0 r2
r0 = sqrt r0
r1 = const 1

r0 = sub r0 r1

ldr s0, [x0, 4]
fmul s0, s0, s0
ldr s1, [x0, 0]
fmul s1, s1, s1
fadd s0, s0, s1
fsqrt s0, s0
movz w9, 0x3f80, lsl 16
fmov s1, w9
fsub s0, s0, s1

Instruction
tapeMath tree Math graph Bytecode

Deduplication Flattening Register 
allocation

Assembly

Codegen

Performance comparison
2D benchmarking

7867 math operations, 
2354 of which are CSG

Performance comparison
2D benchmarking

Performance comparison
2D benchmarking

32× 
speedup

Performance comparison
2D benchmarking

173× 
speedup

Performance comparison
2D benchmarking

274× 
speedup

Graphics
programming

Numerical
programming

GPU
programming

Data structures

Compilers

Algorithms

What does independent
research look like?

You can just do things

read papers

publish blog posts

write software
email authors

submit to journals

Talk about themDo things

Meet interesting people

Learn about their ideas

Synthesize from conversations

Learn more about a subject

Get better at the craft

Recognize promising ideas

Write blog posts

Submit papers

Publish demos

Talk about your work 
on social media

Read blog posts

Read papers

Write software

Do experiments

Kokopelli (2013)
C, Python, script-based UI

Antimony (2015)
C/C++, Python, same kernel, graph-based UI

libfive + Studio (2018)
C++, Scheme, new kernel with robust meshing

Porting to CUDA (2020)
GPU-powered rendering

Fidget (2024)
Rust, WebAssembly, new kernel with JIT compiler

Implicit Surfaces & Independent Research

Fidget

Fidget: Yet Another Implicit Kernel

Efficiently updating implicit in-order forests

A simple adversarial model for dual contouring

Do Not Taunt Happy Fun Branch Predictor

The Solid-State Register Allocator

Ray tracing with M-reps

Writing a SIGGRAPH paper (for fun)

Implicit Surfaces on the GPU

Massively Parallel Rendering of Complex 
Closed-Form Implicit Surfaces (+talk)

Quadratic Error Function Explainer

Consulting on libfive

libfive + Studio

Implicit Kernels for Solid Modeling

Consistent Ordering of N-Dimensional Neighbors

2025

2024

2022

2020

2018

2016

2013

2017 QEFs, Eigenvalues, and Normals

Finding bounding boxes with interval math

Fixing a soldering iron with 3D printing

Zero-crossing logic for robust meshing

Higher-order reactive graph programming

Lineage of CBA CAD tools

Abstraction and instances in graph programming

Ao: Homoiconic solid modeling

Automatic tracking of bounding boxes

Affine coordinates in Ao

Ao

Representation and JITting of math trees

2D contouring

Antimony

Kokopelli

Implicit Surfaces & Independent Research

Fidget

Fidget: Yet Another Implicit Kernel

Efficiently updating implicit in-order forests

A simple adversarial model for dual contouring

Do Not Taunt Happy Fun Branch Predictor

The Solid-State Register Allocator

Ray tracing with M-reps

Writing a SIGGRAPH paper (for fun)

Implicit Surfaces on the GPU

Massively Parallel Rendering of Complex 
Closed-Form Implicit Surfaces (+talk)

Quadratic Error Function Explainer

Consulting on libfive

libfive + Studio

Implicit Kernels for Solid Modeling

Consistent Ordering of N-Dimensional Neighbors

QEFs, Eigenvalues, and Normals

Finding bounding boxes with interval math

Fixing a soldering iron with 3D printing

Zero-crossing logic for robust meshing

Higher-order reactive graph programming

Lineage of CBA CAD tools

Abstraction and instances in graph programming

Ao: Homoiconic solid modeling

Automatic tracking of bounding boxes

Affine coordinates in Ao

Ao

Representation and JITting of math trees

2D contouring

Antimony

Kokopelli

19 blog posts

6 presentations

5 software packages

1 research paper

1 paid consulting gig

Not shown:
Dozens of email conversations 
and one-on-one interactions

Too many tweets

S
Software

Presentations

Blog posts

Informal communications

Research 
papers

Consulting 
gigs

Motivation and energy

Staying motivated

Project completion (%)

Staying motivated
through the power of blog-post driven development

Project completion (%)

Start writing a blog post 
about the project

Blog-post driven development
Why does this work?

• Stop doing open-ended work!

• Narrowly focus on the writeup

• Reminds me what’s cool about the project

• Sharing work has social benefits

• You should have a website

Coming up with ideas

Implicit surface
renderingRobust meshingFast evaluation and

simplificationPet problemsA lot of reading Coming up with
new ideas+ =

Robust meshing

Fast evaluation and
simplification

Implicit surface
rendering

Implicit surface
rendering

+
=

Where to find pet problems?

• Adopt them

• Read a lot (papers, blog posts, etc)

• Find interesting people through news aggregators

• Subscribe to them via RSS

• Look for personal-scale problems

• Revisiting old ideas on modern hardware

Thank you!
Matt Keeter
mattkeeter.com

