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e NO kokopelli: poi2.cad

kokopelli 0.2

Output
Roland Modela

Defaults
Wax rough cut (1/8") %

Input
.cad file (111.125 x 113.03 x 33.02 mm)

Lattice

Resolution (pixels/mm)

555 x 565 x 165 >

Diameter (mm)

Offsets (-1 to fill)

Overlap (0 - 1)

N 7: S =
SN\ .e:ﬁ\' 8 Step height (mm)

<
o e e e . T Modela

\v / A\\ v‘ = Path type

Speed (mm/s) 29
Jog height (mm) 1.0

xmin (mm) 20

ymin (mm) 20
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Graphics research!

1 let r_outer = 1;
2 let r_inner = 0.35;
° ° 3

Massively Parallel Rendering of it < st sty
5 let cross = union(
6 sqrt(square(x - r_outer) + square(z)) - r_inner,

o o 7 intersection(x - r_outer,

Complex Closed-Form Implicit Surfaces s i St e - o
9 let puck = cross.remap_xyz(r, y, z);
10

Matthew J. Keeter, independent researcher 11 let three = 10000.0;
12  let PI = 3.14159;

ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2020 Bl et orrsct = 2 o r_uter + r_tmer;
14 for i in 0..3
15 let angle = i / 3.0 x 2 x PI;
16 let shifted = puck.remap_xyz(
17 x + offset x cos(angle),
18 y + offset * sin(angle),
19 z);
20 three = union(three, shifted);
21 }
22

23 // smooth blend

24 let k = 0.3;

25 let v = three - puck;

26 let out = 0.5 % (puck + three - sqrt(square(v) + kxk));

28 // clip to Z bounds

ok(..) ‘ 3D (normals) v | Rendered in 40.96 ms




What’s so interesting about
implicit surfaces?




What does independent
research look like?



What are implicit surfaces?

fx, y,2) > R

f(x, vy, 2) <0 inside the shape
f(x, V, Z) > () outside the shape
f(x, Y, Z) = () at the surface






Complex
closed-form
Implicit surfaces



Complex
closed-form
Implicit surfaces



Complex
closed-form
Implicit surfaces




Compact representation

...With arbitrary resolution

680 math operations

3612 bytes

(this iImage is 250633 bytes, 69x larger)



“Assembly language for shapes”

(

N\ 4 N\ [
Traditional Weird CAD Domain-specific Scripting
CAD Uls software tools languages
K \ ) \- / W,
4 )
Math expressions
\_ * J
4 )
Geometry kernel
4 ) 4 ) 4 )
Rendering Volume data Meshes
\_ Y, \_ J \_ J

~

v




By analogy to LLVM IR

X86-64

N\ N\
C++ Rust Swift
K \ 7 / /
~ R
LLVM IR
N\ * Y,
4 R
Optimization
QP T :
ARMG64 WebAssembly
J J Y,




Solid modeling and CSG

(that’s Constructive Solid Geometry)




Solid modeling and CSG

(that’s Constructive Solid Geometry)




A microcosm of CS topics

-

s A
Graphics
programming
_ y
s R
Algorithms
_ y
~ R
Compilers
. Y

_

Data structures

~
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Numerical
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~
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GPU
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A simple example

x*+y2 —1




Constructive Solid Geometry

A small example

fite, y) =4/x*+y* =1 A y) =1/(x=1)?+y*=0.5

0.5 - 0.5 0.5 - 0.5
0.0 - . - 0.0 0.0 - 0.0
—0.5 A - —0.5 —0.5 —0.5

§ AI“ :

O 5 OO : —-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5




Constructive Solid Geometry

Union
min (f,(x, y), (x, )

1.5 up I1.5 1.5

1.0 - - 1.0 1.0

0.5 - - 0.5 0.5

0.0 . - 0.0 0.0

—0.5 A - —0.5 —0.5

—1.0 - I—l.o ~1.0
~1.5 & : : : ~1.5 -1.5

—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 —1.5 —1.0 —-0.5 0.0 0.5 1.0 1.5




Constructive Solid Geometry

Intersection

max (f,(x, y), f(x, ¥))

- 0.5 0.5

- 0.0 0.0

- —0.5 —0.5

—1.0

—1.5

~15 —1.0 —-0.5 0.0 0.5 1.0 —1.5 —1.0 —-0.5 0.0 0.5 1.0 1.5



Constructive Solid Geometry

Difference
max (fl(x, y), — y))

1.5 = I1.5 1.5

1.0 - - 1.0 1.0

0.5 - - 0.5 0.5

0.0 - - 0.0 0.0
—0.5 - - 0.5 ~0.5
~1.0 - I—l.o ~1.0
~1.5 + . . . . -15 ~1.5

—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 —1.5 —1.0 —-0.5 0.0 0.5 1.0 1.5




How do we render
these shapes?



Rendering

The naive strategy

500

400

max (fi(x, ), —hHx, )

Evaluate at every pixel! 300

O(NZ % E) 200

N Is Image size 100
E IS expression size

0 100 200 300 400 500



Rendering in 3D

The naive strategy

O(N> X E)

N Is Image size
E Is expression size

This i1s not feasible!

500

400

300

200

100

100

200

300

400

500



One weird trick

Interval arithmetic

X € [0, 1]
struct Interval {

lower: 32, Y € [29 4]

} upper: f32, X+Ye [2’ 5]



One weird trick

Interval arithmetic

f(x,y) = max (\/x2+y2 -1, 0.5 —\/(x— 1)2+y2)

1.5 ¢

1.0 A

0.5 -

0.0 A

_05 -

—1.0 A

—1.5 + T T T T T —1.
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5 —1.5 —1.0 —0.5 0.0 0.5 1.0 1.5




One weird trick

Interval arithmetic

1.0 - I:I X € [19 15]
Y € [0.5, 1]
0.0- f(X,Y) €]0.11, 0.80]
fiX,Y)>0

—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5



Interval arithmetic lets us prove
regions empty or full
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\_

Interval

~

The render loop
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Skip empty / full
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Pixel
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Evaluation complexity

Reduced dimensionality

Work Is concentrated
at the model’s edges




Evaluation complexity

Amortization over pixels

The expression Is evaluated
WALl once for this region

Interval evaluation cost Is
amortized over pixels




Amortized evaluation count
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Expression simplification

The second weird trick

1.5 g

max <\/x2+y2 -1, 0.5 —\/(x— 1)2+y2) 1.0-

0.5 -

0.0 -

_05 -

_10 -

_1.5 + | | | | | *
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5




Expression simplification

The second weird trick

1.5 g

max <\/x2+y2—1, 0.5—\/(x—1)2+y2) 1.0 - D
Xel[-1, —0.5]
Y € 0.5, 1]
max ([—0.3, 0.4], [—-1.7, —1.1])  -1.-

_1.5 + | | | | | *
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5




Expression simplification

The second weird trick

1.5 g

max <\/x2+y2—1, 0.5—\/(x—1)2+y2) 1.0 - D

0.5 -

max (|—0.3, 0.4], [-1.7, —1.1}])

0.0 -

Within this region, we can simplify  -os-

the expression to \/x2 +y* —1 10-

_1.5 + | | | | | *
—1.5 —1.0 —0.5 0.0 0.5 1.0 1.5




Interval arithmetic lets us skip
entire chunks of computation



Modified render loop

\_
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304 math operations,
129 of which are CSG




11 math operations are
relevant within this region



Expression size at pixel evaluation

- 30
100 -

200 -

slle,

"ﬁf'IEF’

500 -

0 100 200 300 400 500



Amortized evaluation count

- 0.10
100

0.08
200

0.06

300
0.04

400
0.02

500

0 100 200 300 400 500



From 2D to 3D



3D rendering

It’s basically the same!




3D rendering

Side view

i HE
e
il




3D rendering

Side view

it

-
it




Modified render loop

&
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Skip empty / full
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J
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evaluation

~
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Simplify
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~
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Heightmaps and shading




Heightmaps and shading




Finding surface normals

At the surface of the model,
the normal is given by

(0f(x, v, 2) oftx, y,2) Oflx, y, z))
ox dy 07




Partial derivatives in 2D




Partial derivatives in 2D
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Partial derivatives in 2D
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Gradient operator overloading

oa
struct Grad { Cl=1,g=().1
value: 32,
dx: 32, h=3 2 _ 04
dy: 32, o
} dz: 32, a(a+b)
a+b=4, —— =0.5

ox



Modified render loop
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Deferred rendering




Amortized evaluation count

- 3.0

200

400

600

800

1000

1024 x 1024 x 1024 render region 0 250 500 750 1000



Evaluation count

Interval evaluations

0

200

400
Expression size

600

800

Voxel evaluations

0

200

400
Expression size

600

800




Fast evaluation of math trees




Our roadmap

Math tree

r

\

Math graph

~

v,

r

Instruction
tape

~

Bytecode




fn eval (ops, reg count, vars) {
regs = vec![0; reg count]
for (out, op) 1n ops {
regs[out] = match op {
Op::X => vars.Xx,
Op::Y => vars.y,
(c) => c,

Op::Sgrt(arg) => regslarg].sqrt(),
Op::Square(arg) => regslarg].square(),
Op::Sub(lhs, rhs) => regs[lhs] - regs[rhs],
Op::Add(lhs, rhs) => regs[lhs] + regs[rhs],
Op::Max(lhs, rhs) => max(regs[lhs], regs[rhs]),



Math tree

-

-

Math graph

~

J

-

Instruction
tape

~

Bytecode




Equation — Tree

max( X432 —1,05—1/(x =12 +y?




Math tree

J

=

r

.

Math graph

~

Wy,

Deduplication

-

Instruction
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~

Bytecode




Tree — Graph

1)(3%

art |

J

oo
|

add

|
9 )




Tree — Graph




Math tree

r

.

Math graph

) (
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Wy, .

Instruction
tape
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Flattening

Bytecode




Flattening the graph

“Postorder traversal”

max
sub sub We want an instruction ordering

) such that arguments are defined
- before they are used
@ ) . DFS walk through the graph
— squaro » Emit a node once all of its
sub arguments have been emitted



Flattening the graph

“Postorder traversal”

$0 var-X

max
sub sub
[ 05 sqrt |
add |
square square |
sub
]




Flattening the graph

“Postorder traversal”

max
sub sub
[ 05 sqrt |
add |
square square |
sub
1

var-X
const 1



Flattening the graph

“Postorder traversal”

Mmax

sub sub

[ 0.5 sgrt )

add |

square square )

var-xX
const 1
sub $0 $1



Flattening the graph

“Postorder traversal”

$14] max

$13| sub sub [$9

$8( 0.5 sqrt )$7

add |36

$10| square square)$3

A8 A0 A B A A A A A
OO ~dNOYUT B WINEFEFR O
1 [ 1 U | U A U | D | R I

var-X
const 1
sub %0 $1
square $2
var-y
square %4
add $3 $5
sgqrt $6
const 0.5

= sub $8 $7

square $0
add $10 $5
sgrt $11

sub $12 $1
max $9 $13



Math tree

-

-

Math graph

~

J
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Instruction
tape

) é

=
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Bytecode

Register
allocation




Reducing memory usage

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $9 $13

Register allocation

var-X

sub rl r2
square r4
var-y
square r3
add r4d r5
sgqrt r4

sub rO r4
square rl
add rl r3
sgrt rl

sub rl r2
max r@ rl



Single static assignment form

This i
IS IS now a compllers talk!

$0 = var-x

$1 =

$2 = sub $0 $1
$3 = square $2
$4 = var-y

$5 = square %4
$6 = add $3 $5
$7 = sqrt $6

$8 =

$9 = sub $8 $7
$10 = square %0
$11 = add $10 $5
$12 = sqgrt $11
$13 = sub $12 %1
$14 = max $9 $13



Liveness ranges

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var -x
const 1
sub $0 $1
square $2
var-y
square $4
add $3 $5
sgrt $6
const 0.5
sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $9 $13

Register allocation

0 Begins when a value is written

Ends when the value iIs
used for the last time



Register allocation

Liveness ranges

$2 $3 $4 $5 $6 S7 $8 $9 $10 $11 $12 $13 $14

$0 = var-x

$1 = const 1

$2 = sub %0 $1
$3 = square $2
$4 = var-y

$5 = square %4
$6 = add $3 $5
$7 = sqrt $6

$8 = const 0.5
$9 = sub $8 %7
$10 = square $0
$11 = add $10 $5
$12 = sgrt $11
$13 = sub $12 %1
$14 = max $9 $13



Register allocation

Reverse Linear Scan
%0 Ends when a value is written

$0 = var-x

$1 = const 1

$2 = sub %0 $1

$3 = square $2

$4 = var-y

$5 = square %4

$6 = add $3 $5

$7 = sqrt $6

$8 = const 0.5

$9 = sub $8 %7 | |
$10 = square $0 Begins when the value is
$11 = add $10 $5 used for the first time
$12 = sqrt $11

$13 = sub $12 %1

$14 = max $9 $13



$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $9 $13

Register allocation

Reverse Linear Scan

 Maintain a value — register mapping
* Bind the output value to r0
* Walk through the instructions in reverse

 When an value becomes live,
bind it to an unused register

 When a value is no longer live,
release Its register binding



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub $0 $1

ii i \S/Calﬁa;e & SSA value Register
_ _ $14 o0

$5 = square %4 : =

$6 = add $3 $5 : =

$7 = sqrt $6 - -

58 = r4

$9 = sub $8 $7

$10 = square $0

$11 = add $10 $5

$12 = sqrt $11

$13 = sub $12 %1

$14 = max $9 $13 rO = max r? r?



Register allocation

Reverse Linear Scan

$@ = var-x

$1 =

$2 = sub $0 $1

ii i \S/gﬁa;e > SSA value Register
_ _ - ro

$5 = square %4 _ =

$6 = add $3 $5 : =

$7 = sqrt $6 - -

58 = - r4

$9 = sub $8 $7

$10 = square $0

$11 = add $10 $5

$12 = sqrt $11

$13 = sub $12 %1

$14 = max $9 $13 rO = max r? r?



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

53 = square $2 SSA value Register
$4 = var-y 59 s
$5 = square %4 ] 1
$6 = add $3 $5 - r2
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 %1

$14 = max $9 $13 r@ = max r@ r?



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y 59 0
$5 = square %4 613 1
$6 = add $3 $5 _ .
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 %1

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x
$1 =
$2 = sub $0 $1

$3 = square $2

$4 = var-y SSA$\;aIue Reg_:igter
$5 = square %4 613 1
$6 = add $3 $5 _ .
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 $1 rl = sub r? r?

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x
$1 =
$2 = sub $0 $1

$3 = square $2

$4 = var-y SSA$\;aIue Reg_:igter
$5 = square %4 ] 1
$6 = add $3 $5 _ .
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 $1 rl = sub r? r?

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x
$1 =
$2 = sub $0 $1

$3 = square $2

$4 = var-y SSA$\;aIue Reg_:igter
$5 = square %4 $12 1
$6 = add $3 $5 _ .
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 $1 rl = sub rl r?

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x
$1 =
$2 = sub $0 $1

$3 = square $2

$4 = var-y SSA$\;aIue Reg_:igter
$5 = square %4 $12 1
$6 = add $3 $5 $1 r2
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square $2 SSA value Register
$4 = var-y 59 0
$5 = square %4 $12 ril
$6 = add $3 $5 $1 r2
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11 rl = sqrt r?

$13 = sub $12 $1 rl = sub rl1 r2

$14 = max $9 $13 rO = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y 59 0
$5 = square %4 ] 1
$6 = add $3 $5 $1 r2
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11 rl = sqrt r?

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square $2 SSA value Register
$4 = var-y 59 0
$5 = square %4 $11 ril
$6 = add $3 $5 $1 r2
$7 = sgrt $6 - r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl1 r2

$14 = max $9 $13 rO = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square $2 SSA value Register
$4 = var-y 59 0
$5 = square %4 $10 ril
$6 = add $3 $5 $1 r2
$7 = sgrt $6 $5 r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0

$11 = add $10 $5 rl = add rl r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl1 r2

$14 = max $9 $13 rO = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square $2 SSA value Register
$4 = var-y 59 0
$5 = square %4 $0 rl
$6 = add $3 $5 $1 r2
$7 = sgrt $6 $5 r3
$8 = - r4
$9 = sub $8 $7

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl1 r2

$14 = max $9 $13 rO = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square $2 SSA value Register
$4 = var-y 58 0
$5 = square %4 $0 rl
$6 = add $3 $5 $1 r2
$7 = sqrt $6 $5 r3
$8 = $7 rd
$9 = sub $8 $7 rO = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl1 r2

$14 = max $9 $13 rO = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y - 0
$5 = square %4 50 1
$6 = add $3 $5 $1 r2
$7 = sgrt $6 $5 r3
$8 = ro = $7 r4
$9 = sub $8 $7 r®@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y - 0
$5 = square %4 50 1
$6 = add $3 $5 $1 r2
$7 = sqrt $%$6 r4 = sqrt r4 $5 r3
$8 = ro = $6 r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y - 0
$5 = square %4 50 1
$6 = add $3 $5 r4 = add r4 r5 $1 -9
$7 = sqrt $%$6 r4 = sqrt r4 $5 r3
$8 = ro = $3 r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y - 0
$5 = square %4 r3 = square r3 50 1
$6 = add $3 $5 r4 = add r4 r5 $1 -9
$7 = sqrt $%$6 r4 = sqrt r4 $4 r3
$8 = ro = $3 r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

b3 = square 32 SSA value Register
$4 = var-y r3 = var-y - 0
$5 = square %4 r3 = square r3 50 1
$6 = add $3 $5 r4 = add r4 r5 $1 -9
$7 = sqgrt $6 r4 = sqrt r4 - r3
$8 = ro = $3 r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r0 rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1

$3 = square $2 r4d = square r4 SSA value Register
$4 = var-y r3 = var-y - 0
$5 = square %4 r3 = square r3 50 1
$6 = add $3 $5 r4 = add r4 r5 $1 -9
$7 = sqgrt $6 r4 = sqrt r4 - r3
$8 = ro = $2 r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 =

$2 = sub %0 $1 rd = sub rl r2

$3 = square $2 r4d = square r4 SSA value Register
$4 = var-y r3 = var-y - 0
$5 = square %4 r3 = square r3 50 1
$6 = add $3 $5 r4 = add r4 r5 $1 -9
$7 = sqgrt $6 r4 = sqrt r4 - r3
$8 = ro = - r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



Register allocation

Reverse Linear Scan

$0 = var-x

$1 = r2 =

$2 = sub %0 $1 rd = sub rl r2

$3 = square $2 r4d = square r4 SSA value Register
$4 = var-y r3 = var-y - 0
$5 = square %4 r3 = square r3 50 1
$6 = add $3 $5 r4 = add r4 rb5 ] -9
$7 = sqgrt $6 r4 = sqrt r4 - r3
$8 = ro = - r4
$9 = sub $8 $7 r@ = sub r0 r4

$10 = square %0 rl = square rl

$11 = add $10 $5 rl = add rl1 r3

$12 = sgrt $11 rl = sqrt rl

$13 = sub $12 $1 rl = sub rl r2

$14 = max $9 $13 r@ = max r@ rl



$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $9 $13

r2
r4
r4
r3
r3
r4
r4
re
re

rl
rl

re

Register allocation

Reverse Linear Scan

var-X

sub rl r2
square r4
var-y
square r3
add r4 r5
sgqrt r4

sub rO r4
square rl
add rl r3
sgrt rl

sub rl r2
max r@ rl

SSA value

Register

ro

rl

r2

r3

r4




Register allocation

Liveness ranges + simplification

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $9 $13

A value’s liveness range begins when
the value is used for the first time

If min or max can be simplified, then
one or the other argument is not used



Register allocation

Liveness ranges + simplification

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $13

A value’s liveness range begins when
the value is used for the first time

If min or max can be simplified, then
one or the other argument is not used



Register allocation

Reverse linear scan with simplification

$0
$1
$2
$3
$4
$5
$6
$7
$8
$9
$10
$11
$12
$13
$14

var-X

sub $0 $1
square $2
var-y
square %4
add $3 $5
sgrt $6

sub $8 $7
square $0
add $10 $5
sgrt $11
sub $12 %1
max $13

 Maintain a value — register mapping
 Bind the output value to r0
 Walk through the instructions in reverse

 |f the instruction’s output value
IS not live, then skip I1t!

 When an value becomes live,
bind it to an unused register

 When a value is no longer live,
release Iits register binding



Register allocation

Reverse linear scan with simplification

$0 = var-x r®@ = var-x

$1 = rl =

$4 = var-y r2 = var-y

$5 = square %4 r2 = square r2
$10 = square %0 r®@ = square ro
$11 = add $10 $5 r@ = add r0 r2
$12 = sgrt $11 r@ = sqrt ro
$13 = sub $12 $1 r@ = sub r0 rl
$14 = max $13 r@ = copy ro
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Bytecode interpreter

r2
r4
r4
r3
r3
r4
r4
re
re

rl
rl

re

vVar-X

sub rl r2
square r4
var-y
square r3
add r4 r5
sqrt r4

sub rO r4
square rl
add rl r3
sgrt rl

sub rl r2
max r@ rl

fn eval(ops, reg count, vars) {

regs = vec![0;

reg count]

for (out, op) 1n ops {
match op {
Op::X => vars.Xx,
Op::Y => vars.y,

(c) => ¢,

regs[out] =

Op
Op
Op::Sub (1
Op::Add(1
Op: :Max (1
]
}
regs[0]

1S,
1S,

1S,

g
I
g

Ns) => regs[lhs]
N1s) => regs[lhs]

c:Sgrt(arg) => regs[arg].sqrt(),
. :Square(arg) => regslarg].square(),

- regs[rhs],
+ regs|[rhs],

N1s) => max(regs

lhs],

regs[rhs]),



Bytecode interpreter overhead

fn eval (ops, reg count, vars) {
regs = vec![0; reg count]
for (out, op) 1n ops { :
regs[out] = match op { _ Unpredictable
Op::X => vars.x, branch
Op::Y => vars.y,
(c) => c, Lots of reading and

Op::Sqrt(arg) => regs[argl.sqrt()., / writing to RAM
Op::Square(arg) => regsl[arg].square(),
Op::Sub(lhs, rhs) => regs[lhs] - regs[rhs],
Op::Add(lhs, rhs) => regs[lhs] + regs[rhs],
Op::Max(lhs, rhs) => max(regs[lhs], regs[rhs]),
}
}
regs[0]

;



Bytecode — Assembly

The final frontier

r©
r©
rl
rl
r©
r©
rl

r©

var -y
square ro
var -X

square rl

add r@ r2
sgqrt ro

sub r® ril

ldr s@, [x0,
fmul s@, s0,
ldr s1, [x0,
fmul sl1, sl,
fadd sO, s0,
fsgrt sO, s0O
movz w9,
fmov sl1, w9
fsub sO, s0,

4]
s@
O]
s1
s1

sl

lsl 16
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What does independent
research look like?




You can just do things

publish blog posts <ubmit To journals



Learn more about a subject Write blog posts

Get better at the craft Submit papers
Recognize promising ideas Publish demos
m Talk about your work
on social media
~ R ~ R
Do things Talk about them
- Y . Y

Read blog posts
Read papers
Write software

R

Meet interesting people

iment ir i
Do experiments Learn about their ideas

Synthesize from conversations



Kokopelli (2013)

C, Python, script-based Ul

YAT S kokopelh. gearcad

Looth.shdpe » True
Wwoth & reflect W iooth)

N3
Looth & «XA
Leeth = reduce(operalor.odd, [rotete(looth, 1*360/N)
for 4 1»n resge()))
ll‘l
Logth « reduce(operotor.odd, [rotete(tooth, *30NM)
for 1 renge(N2)))

Letth «= airciedd, 9, W)

Loeth &« Girciel, 9. BD) « Gircle(®, &, BA*0.Y)
Lotth. bounds = Circled®, 0, RD) . bounds

Leeth » extrusion{teeth, 9.1, 9.1)

Logth. Coler »

F Lreote © st OoFf 2ix riba SMasioe Lhe geeor

Mbs = reclongle(-0. 00N, D.ONI*N, ~ER%"0.95, BR".595%)
ribs » reduce(cperotor.odd, [rototedribs, 1°109) for
Mbs o= Circlied®, &, 0.4)

M “» Sircled(9.90.0.23%)

Mbs = reclongle(-0.06, .06, &, 0.3)

Mbs » exlirugion{rida, “9.05, 9.98)

M. CHOr =

F Lreate 0 s e (1. O

DOt » CAircled®, B, BR"D.95) «~ &arciel(l, 9, .35
base = reclongle(-0.06, 0.0, &, 0.3)

POse » xlirusionibade, “9.04,. 9.04)

st . CHOr =

Cd . shapes = Leeth, b3, Dase

Re-render the output image




Antimony (2015)

C/C++, Python, same kernel, graph-based Ul

® 6@ antimony - Graph - [../examples/csg2.sb] % antimony - View - [../examples/csg2.sb}




libfive + Studio (2018)

C++, Scheme, new kernel with robust meshing

® O O ] iron.ao "

(define radius-wire 3/2)
(define radius-iron 10/2)

(define base (circle #[0 0] (+ radius-wire #2)))
(define rest (let ((shift #8.06361))
(difference
(circle #[shift 0] (+ radius-iron #4.02195))
(circle #[shift 0] radius-iron)
(lambda-shape (x y 2) (- shift x)))))

(define cutout-height 8)
(define base-height 10)
(define loft-height (+ base-height 10))
(define rest-height (+ loft-height 10))

(reflect-xz (union
(difference
(extrude-z base 0 base-height)
(cylinder-z #[0 0 -1] radius-wire cutout-height))
(loft base rest base-height loft-height)
(extrude-z rest loft-height rest-height)))

#<<tree> 110c2c280>




Porting to CUDA (2020)

GPU-powered rendering

O ® demo
View

V¥V Text editor

(set-bounds! [-50
(set-quality! ‘8)
(nwf—lwnmluflmh! 'W)

s (box*[-5°-5-0.5]°[5°5°0])
(define *arch
(let((h-2.5)°(r-1.5))
(union (rectangle [(-'r) 0] [r-hl])
(circle'r-[0-h]))))

(define "subpillar

(union
(box[5.7-0.2-61-[6.8
(scale-z(sphere-0.5

2:8.3)

(cylinder-z-0.1
(sphere 0.1 [
))

(define railing-cut

(bnx [H | *0 ¢ »] [ﬁ 917 .]))
(define railing-multicut
(union

#<<shape> 109b5c000>

V Settings

V¥ Shapes

Render size:
256 512 @ 1024 2048

Dimension:

Shape at 0x7fc9cfec@eeld
Render time: 0.091248 s
SSAO time: 0.112193 s
Texture load time: 0.007226 s 20 @ 30
Save shape.frep Render mode:

Heightmap Normals @ SSAO




Fidget (2024)

Rust, WebAssembly, new kernel with JIT compiler

1 let r_outer = 1;

2 let r_inner = 0.35;

3

4 let r = sqrt(square(x) + square(y));

5 1let cross = union(

6 sqrt(square(x - r_outer) + square(z)) - r_inner,
7 intersection(x - r_outer,

8 intersection(z - r_inner, -r_inner - z)));
9 let puck = cross.remap_xyz(r, y, 2);

10

11 let three = 10000.0;

12 let PI = 3.14159;

13 let offset = 2 % r_outer + r_inner;

14 for i in 0..3 {

15 let angle = 1 / 3.0 % 2 x PI;

16 let shifted = puck.remap_xyz(

17 x + offset x cos(angle),

18 y + offset x sin(angle),

19 r 4) b
20 three = union(three, shifted);
21 |}
22
23 // smooth blend
24 let K = 0.3;
25 let v = three - puck;
26 let out = 0.5 x (puck + three - sqrt(square(v) + kxk));
27

28 // clip to Z bounds

Ok(..) 3D (normals) v Rendered in 40.96 ms
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Fidget

Fidget: Yet Another Implicit Kernel

Efficiently updating implicit in-order forests

A simple adversarial model for dual contouring
Do Not Taunt Happy Fun Branch Predictor
The Solid-State Register Allocator

Ray tracing with M-reps

Writing a SIGGRAPH paper (for fun)

Implicit Surfaces on the GPU

Massively Parallel Rendering of Complex
Closed-Form Implicit Surfaces (+talk)

Quadratic Error Function Explainer

Consulting on libfive

libfive + Studio

Implicit Kernels for Solid Modeling

Consistent Ordering of N-Dimensional Neighbors
QEFs, Eigenvalues, and Normals

Finding bounding boxes with interval math
Fixing a soldering iron with 3D printing
Zero-crossing logic for robust meshing
Higher-order reactive graph programming
Lineage of CBA CAD tools

Abstraction and instances in graph programming
Ao: Homoiconic solid modeling

Automatic tracking of bounding boxes

Affine coordinates in Ao
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Representation and JITting of math trees

2D contouring

Antimony

Kokopelli

19 blog posts

0 presentations

5 software packages
1 research paper

1 paid consulting gig

Not shown:

Dozens of email conversations
and one-on-one Interactions

Too many tweets
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Motivation and energy



Staying motivated

Project completion (%)



Staying motivated

through the power of blog-post driven development

I 0 0 |

Project completion (%)

Start writing a blog post
about the project



Blog-post driven development
Why does this work?

» Stop doing open-ended work!

* Narrowly focus on the writeup

« Reminds me what’s cool about the project
» Sharing work has social benefits

* You should have a website



Coming up with ideas
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2D Graphics on Modern GPU

May 8, 2019

Massively Parallel Rendering of Complex Closed-Form Implicit Surfaces

MATTHEW ). KEETER, Independent researcher

Fig. 1. An assortment of implicit surfaces rendered using our technique. Left: an extruded text string, rotated and rendered as a heightmap. Center: a bear head
sculpted using smooth blending operations, with normals found by automatic differentiation. Right: a complex architectural model rendered with screen-space
ambient occlusion and perspective. All models are rendered directly from their mathematical representations, without triangulation or raytracing.

We present a new method for directly rendering complex closed-form implicit
surfaces on modern GPUs, taking advantage of their massive parallelism. Our
model representation is unambiguously solid, can be sampled at arbitrary
resolution, and supports both constructive solid geometry (CSG) and more
unusual modeling operations (e.g. smooth blending of shapes). The rendering
strategy scales to large-scale models with thousands of arithmetic operations
in their underlying mathematical expressions. Our method only requires
C? continuity, allowing for warping and blending operations which break
Lipshitz continuity.

To render a model, its underlying expression is evaluated in a shallow
hierarchy of spatial regions, using a high branching factor for efficient
parallelization. Interval arithmetic is used to both skip empty regions and
construct reduced versions of the expression. The latter is the optimization
that makes our algorithm practical: in one benchmark, expression complexity
decreases by two orders of magnitude between the original and reduced
expressions. Similar algorithms exist in the literature, but tend to be deeply
recursive with heterogeneous workloads in each branch, which makes them
GPU-unfriendly; our evaluation and expression reduction both run efficiently
as massively parallel algorithms, entirely on the GPU.

The resulting system renders complex implicit surfaces in high resolution
and at interactive speeds. We examine how performance scales with comput-
ing power, presenting performance results on hardware ranging from older
laptops to modern data-center GPUs, and showing significant improvements
at each stage.

CCS Concepts: « Computing methodologies — Rasterization; Volu-
metric models.

Additional Key Words and Phrases: implicit surface, signed distance field,
freps, octrees, rasterization, gpu, cuda

Author’s address: Matthew J. Keeter, Independent researcher, matt.j keeter@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/7-ART141 $15.00

https://doi.org/10.1145/3386569.3392429

ACM Reference Format:

Matthew J. Keeter. 2020. Massively Parallel Rendering of Complex Closed-
Form Implicit Surfaces. ACM Trans. Graph. 39, 4, Article 141 (July 2020),
10 pages. https://doi.org/10.1145/3386569.3392429

1 INTRODUCTION

Implicit surfaces and functional representations are a powerful way
to represent solid models [Bloomenthal and Wyvill 1997; Gomes
et al. 2009]. Compared to boundary representations (e.g. triangle
meshes or NURBS surfaces), they offer unambiguous inside-outside
checking, easy constructive solid geometry (CSG) operations, and
arbitrary resolution. In recent years, functional representations (f-
reps) have been used as the kernel of both commercial [Courter
2019] and open-source [Keeter 2019] CAD packages. They are a
fundamental building block in the demoscene community [Burger
et al. 2002; Quilez 2008], used as a representation for generative art
[Moen 2019], and even as the underlying technology for a recent
PlayStation 4 game [Evans 2015].

Unlike boundary representations, implicit surfaces cannot easily
be rendered in their native forms. This paper presents a new method
for rendering the family of implicit surfaces represented by arbitrary
closed-form arithmetic expressions, i.e., representing a sphere as

f(x,y,2) < 0 where f(x,y,2) = y/x2 +y?+22 -1

This representation is particularly flexible and can be treated as
an “assembly language for shapes" which is targeted by higher-
level tools. The space of higher-level tools spans the gamut from
advanced solid modeling packages [Allen 2019] to user-friendly
content generation tools [Keeter 2015].

Our rendering strategy runs in both 2D and 3D, making efficient
use of modern GPU hardware and APIs. Unlike previous work, it
scales to complex expressions, maintaining interactive framerates
while rendering models built from hundreds or thousands of arith-
metic operations. It requires no continuity higher than C°, which
allows for extremely flexible modeling and unusual spatial transfor-
mations. Finally, it scales well with GPU power; as GPU performance
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